If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x-224=0
a = 2; b = 3; c = -224;
Δ = b2-4ac
Δ = 32-4·2·(-224)
Δ = 1801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{1801}}{2*2}=\frac{-3-\sqrt{1801}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{1801}}{2*2}=\frac{-3+\sqrt{1801}}{4} $
| 7x^2-2+5x-4x^2-17=0 | | 5y+10y=10 | | 6–3b=10-b | | 5+5x4=24 | | (X+1)/4=4-(x-+1)/3 | | J=5.15h+42 | | 5w-9=-7(w-9) | | Y=-5+-2x | | 4(x-1)=-5x+32 | | 4.25*1.2=y | | 1/2x136=272 | | 2x+4=0.5x+8 | | 5(y-7)=-70 | | 3x=450+6x | | 0=-5.6t^2+108 | | x;30=1/6 | | (u-6)^2-44=0 | | 11-4x=2x^2-5 | | 50x-5=145 | | 5(10x+2=8(x-1) | | -2-(-7)=y | | 4p=81/p | | x(2)+11x-42=0 | | 5x+13+x=180 | | 500=1200-100r | | 7u-14=-7(u-2) | | 3x(2)+15x+18=0 | | 4b^2*104=0 | | 1000=1200-100r | | X2-7x-60=0 | | x(2)-10x+21=0 | | 9n+7=7n+15 |